Potentiometer is used to adjust resistance: potentiometer is a component that can adjust and change the resistance value arbitrarily, but using potentiometer to adjust resistance is inefficient, the accuracy of resistance control is not easy to control, and the labor cost is large.

Laser trimming resistance substrate by cutting short pulse 10mw laser pointer scanning, the resistor paste layer by laser heating gasification, the formation of a certain depth of the notch, thus changing the conductive cross-sectional area of the resistor body and the conductive length reached to below the target resistance to allow the body repair resistance deviation range, suitable for rapid mass production resistance.

Sandblasting and resistance control: the resistance substrate is polished by spraying sand flow, so that the resistance slurry layer is worn, thus changing the conductive section area and the conductive length of the resistor body, and achieving the required resistance. Sand spray resistance is a conventional resistance adjustment scheme. The equipment price is low, but the precision of resistance adjustment is not easy to control, the speed is slow, and it is not easy to automate and batch production.

red laser pointer

The team uses a beam of laser to capture and move particles, and then controls the laser to create images. They take advantage of a near invisible light field to capture and move small particles and pass them through a space. When particles move, they are irradiated by red, green and blue 500mw laser pointer, and map the surface of the object to make it imaging. When the velocity of the particle moves fast enough, the three-dimensional stereoscopic image will be produced and the color gamut is large and the fineness is high. The speed is a little faster, and the objects in the image look like moving. This image can coexist with the entities in the same physical space and can be seen from any angle, which is not realized by the holographic technology at present.

The research team has developed so far the most delicate mirror -- only one atom thick molybdenum selenide (MoSe2) thin section, the miracle of engineering will limit the physical world and a step forward. The researchers said that this thin mirror can be developed for the special sensor is very small, and the use of 50mw laser pointer information transmission computer chip.

Scientists have explained that if electrons collide with a proton or light particle in the atom, electrons will probably move from the low level orbitals to the high level orbitals, so that an electron hole pair will form in the electric field. When exposed to light at certain wavelengths, the electrons around MoSe2 are likely to jump. The electrons are negatively charged, while the protons in the nuclei are positively charged. Therefore, these electron hole pairs will draw positive charges from the proton, making the behavior of holes behave like particles. The electronically negative electrons in the vicinity attract these "false" particles and, in some cases, pair up to form a quantum mechanical object called excitons. These excitons themselves release light, interact with the incident light and send them back in the way they are incident. In this way, these MoSe2 slices can work like a mirror.

According to reports, the ultra-short ultra-short laser in the laboratory to create an unprecedented super-electromagnetic field, ultra-high energy density and ultra-fast time scale comprehensive extreme physical conditions in the desktop accelerator, ultrafast chemistry, attosecond science, materials Science, 200mw laser pointer fusion, nuclear physics and nuclear medicine, laboratory astrophysics and other fields have great application value.